Angular momenta of even-even fragments in the neutronless fission of 252Cf

Phys. Rev. C 60, 034613 – Published 23 August 1999
Ş. Mişicu, A. Săndulescu, G. M. Ter-Akopian, and W. Greiner


The recent advent of experimental techniques in which the dynamical characteristics of fission fragments are determined more accurately prompted us to investigate the angular momentum acquired by fragments in a model which describes the cold (neutronless) fission of 252Cf as the decay of a giant nuclear molecule. The molecular configuration is a consequence of the interplay between the attractive nuclear part and the repulsive Coulomb+nuclear forces. The basic idea of the present approach is to separate the radial (fission) modes describing the decay of the molecule from the modes associated to transversal vibrations (bending) of the fragments. The distance between the centers of the two fragments is fixed by the requirement that the energy released in the fission reaction Q equals the sum of quantum zero energies of radial and transversal modes and the total excitation energy E*. Using a semiclassical coupled channel formalism we computed the additional angular momenta acquired by the fragments during their postscission motion, and found that the Coulomb excitation accounts for less than 10% of the final spins.


  • Received 8 March 1999
  • Published 23 August 1999

© 1999 The American Physical Society

Authors & Affiliations

Ş. Mişicu1, A. Săndulescu1,2, G. M. Ter-Akopian3, and W. Greiner2

  • 1National Institute for Nuclear Physics, Bucharest, P.O. Box MG6, Romania
  • 2Institut für Theoretische Physik der J.W. Goethe Universität, Frankfurt am Main, Germany
  • 3Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, RU-141980, Russia

References (Subscription Required)

Authorization Required




Log In



Article Lookup
Paste a citation or DOI

Enter a citation
  1. Enter a citation to look up or terms to search.

    Ex: "PRL 112 068103", "Phys. Rev. Lett. 112, 068103", "10.1103/PhysRevLett.112.068103"