Neutron scattering from elemental indium: Optical model and bound-state potential

Phys. Rev. C 42, 2487 – Published 1 December 1990
S. Chiba, P. T. Guenther, R. D. Lawson, and A. B. Smith


Neutron elastic-scattering cross sections of indium are measured from 4.5 to 10 MeV at intervals of ≊500 keV. Seventy or more differential values are obtained at each incident energy, distributed between ≊18° and 160°. These are combined with lower-energy data previously obtained at this laboratory, and with 11- and 14-MeV results from the literature, to form a comprehensive elastic-scattering database extending from ≊1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50–82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of particle states, but does not do well for hole states. The latter shortcoming is attributed to hole states having occupational probabilities sufficiently different from unity so that the exclusion principle becomes a factor, to rearrangement of the neutron core, and to the fact that the shell-model potential was assumed to have an energy-independent geometry. The systematic behavior of the real optical potential is discussed, and it is shown that the isovector strength deduced from neutron scattering is consistent with the nucleon-nucleon scattering data when a mass dependence of the radius is used.


  • Received 5 July 1990
  • Published in the issue dated December 1990

© 1990 The American Physical Society

Authors & Affiliations

S. Chiba, P. T. Guenther, R. D. Lawson, and A. B. Smith

  • Engineering Physics Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439

References (Subscription Required)

Authorization Required




Log In



Article Lookup
Paste a citation or DOI

Enter a citation
  1. Enter a citation to look up or terms to search.

    Ex: "PRL 112 068103", "Phys. Rev. Lett. 112, 068103", "10.1103/PhysRevLett.112.068103"