Impurity effects on atomic bonding in Ni3Al

Phys. Rev. B 52, 14421 – Published 15 November 1995
Sheng N. Sun, Nicholas Kioussis, Say-Peng Lim, A. Gonis, and William H. Gourdin


First-principles electronic structure calculations based on the full-potential linear-muffin-tin-orbital method have been employed to study the contrasting effects of boron and hydrogen on the electronic structure of the L12 ordered intermetallic Ni3Al. The total energy, the site- and l-projected densities of states, and the impurity-induced charge-density characteristics are calculated for various impurity configurations, to investigate the effects of local environment on the electronic structure. Total-energy calculations show that both boron and hydrogen impurities prefer to occupy octahedral interstitial sites that are entirely coordinated by six nickel atoms. Our results suggest that the underlying mechanism of the boron-induced strengthening in Ni3Al is the Ni-d and B-p hybridization between the nearest-neighbor nickel and boron sites. This results in an enhancement of the intraplanar metallic bonding between the nickel atoms, an enhancement of interstitial bonding charge, and reduction of the bonding-charge directionality around the Ni atoms on the (001) NiAl planes. In contrast, hydrogen is found to enhance the bonding-charge directionality near some Ni atoms and to reduce the interstitial charge, suggesting that it promotes poor local cohesion. When both boron and hydrogen are present in Ni3Al, the dominant changes in the electronic structure are induced by boron and the charge distribution resembles that of Ni3Al+B. These results are broadly consistent with the notion of boron as a cohesion enhancer and hydrogen as an embrittler.


  • Received 31 July 1995
  • Published in the issue dated 15 November 1995

© 1995 The American Physical Society

Authors & Affiliations

Sheng N. Sun, Nicholas Kioussis, and Say-Peng Lim

  • Department of Physics and Astronomy, California State University, Northridge, California 91330

A. Gonis and William H. Gourdin

  • Lawrence Livermore National Laboratory, Department of Chemistry Material Science, Livermore, California 94551

References (Subscription Required)

Authorization Required




Log In



Article Lookup
Paste a citation or DOI

Enter a citation
  1. Enter a citation to look up or terms to search.

    Ex: "PRL 112 068103", "Phys. Rev. Lett. 112, 068103", "10.1103/PhysRevLett.112.068103"