Stability and Teller’s theorem: Fullerenes in the March model

Phys. Rev. A 56, 632 – Published 1 July 1997
Dennis P. Clougherty and Xiang Zhu


We study C60 with the use of the March model [N. H. March, Proc. Camb. Philos. Soc. 48, 665 (1952)]. A spherical shell model is invoked to treat the nuclear potential, where the nuclear and core charges are smeared out into a shell of constant surface charge density. The valence electron distribution and the electrostatic potential are efficiently computed by integration of the Thomas-Fermi equation, subject to the shell boundary conditions. Total energy is numerically calculated over a range of shell radii, and the mechanical stability of the model is explored with attention to the constraints of Teller’s theorem [E. Teller, Rev. Mod. Phys. 34, 627 (1962)]. The calculated equilibrium radius of the shell is in fair agreement with experiment.


  • Received 30 December 1996
  • Published in the issue dated July 1997

© 1997 The American Physical Society

Authors & Affiliations

Dennis P. Clougherty and Xiang Zhu

  • Department of Physics, University of Vermont, Burlington, Vermont 05405


Erratum: Stability and Teller's theorem: Fullerenes in the March model [Phys. Rev. A 56, 632 (1997)]

Dennis P. Clougherty and Xiang Zhu
Phys. Rev. A 89, 029902 (2014)

References (Subscription Required)

Authorization Required




Log In



Article Lookup
Paste a citation or DOI

Enter a citation
  1. Enter a citation to look up or terms to search.

    Ex: "PRL 112 068103", "Phys. Rev. Lett. 112, 068103", "10.1103/PhysRevLett.112.068103"