The Theory of Quantized Fields. II

Phys. Rev. 91, 713 – Published 1 August 1953
Julian Schwinger

Abstract

The arguments leading to the formulation of the action principle for a general field are presented. In association with the complete reduction of all numerical matrices into symmetrical and antisymmetrical parts, the general field is decomposed into two sets, which are identified with Bose-Einstein and Fermi-Dirac fields. The spin restriction on the two kinds of fields is inferred from the time reflection invariance requirement. The consistency of the theory is verified in terms of a criterion involving the various generators of infinitesimal transformations. Following a discussion of charged fields, the electromagnetic field is introduced to satisfy the postulate of general gauge invariance. As an aspect of the latter, it is recognized that the electromagnetic field and charged fields are not kinematically independent. After a discussion of the field strength commutation relations, the independent dynamical variables of the electromagnetic field are exhibited in terms of a special gauge.

DOI: http://dx.doi.org/10.1103/PhysRev.91.713

  • Received 19 February 1953
  • Published in the issue dated August 1953

© 1953 The American Physical Society

Authors & Affiliations

Julian Schwinger

  • Harvard University, Cambridge, Massachusetts

Related

References (Subscription Required)

Authorization Required


×
×

Images

×

Log In

Cancel
×

Search


Article Lookup
Paste a citation or DOI

Enter a citation
×
  1. Enter a citation to look up or terms to search.

    Ex: "PRL 112 068103", "Phys. Rev. Lett. 112, 068103", "10.1103/PhysRevLett.112.068103"