Fluxoid Quantization, Pair Symmetry, and the Gap Energy in the Current-Carrying Bardeen-Cooper-Schrieffer State

Phys. Rev. 132, 14 – Published 1 October 1963
Murray Peshkin

Abstract

The method of Byers and Yang is extended for application to the current-carrying BCS state by including the magnetic interaction between electrons in the zero-order Hamiltonian. In the case of a thin superconducting ring, the problem is reduced to the zero-current problem by separating out the collective motion. In the general case, this process is not carried out completely, but the symmetry of the BCS state provides enough information to obtain the desired results. When the fluxoid is equal to an integral multiple of (πce), the single-particle states occur in pairs which go into each other under reflection about the average electron velocity at each point. A qualitative argument is given to show why this symmetry is necessary for the BCS reduced interaction to have its full effectiveness. The crux of the matter is that in the absence of such symmetry, the Fermi surface is irregular and a substantial fraction of the important states near that surface are unable to participate in a coherent BCS wave function. The Meissner effect is not necessary for the quantization of magnetic flux.

DOI: http://dx.doi.org/10.1103/PhysRev.132.14

  • Received 20 May 1963
  • Published in the issue dated October 1963

© 1963 The American Physical Society

Authors & Affiliations

Murray Peshkin

  • Argonne National Laboratory, Argonne, Illinois

References (Subscription Required)

Authorization Required


×

Download & Share


PDF Export Citing Articles (5)
×

Images

×

Log In

Cancel
×

Search


Article Lookup
Paste a citation or DOI

Enter a citation
×
  1. Enter a citation to look up or terms to search.

    Ex: "PRL 112 068103", "Phys. Rev. Lett. 112, 068103", "10.1103/PhysRevLett.112.068103"